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Abstraet We propose that the correlation functions of the inhomogeneous eight-vertex model 
in the anti-femelechic regime satisfy a system of difference equations with respect to the 
s p h d  parameters. Solving the simplest difference equation we obtain the expression for the 
spontaneous staggered polarization conjectured by Bater and Kelland. We also discuss a related 
conshunion of vertex operators on the lanice. 

1. Introduction 

In [1,2] it was recognized that the correlation functions of the inhomogeneous six-vertex 
model in the anti-ferroelectric regime can be expressed as a trace of products of the q- 
deformed vertex operators. An explicit integral formula is given in 121. These correlators 
satisfy a system of q-difference equations 131, that were introduced by Smimov in the study 
of form factors in massive integrable QW 141 and correspond to the level-0 case of the q-KZ 
equation of Frenkel and Reshetikhin 151. (To be precise the equations for the correlators are 
‘dual’ tb Smimov’s ones, but we do not go into such details here). As remarked in [5], if 
one replaces the trigonometric R matrices appearing here by the elliptic ones, the resulting 
equations are still ‘completely integrable’. In this paper we propose that the latter are 
precisely those satisfied by the correlators of the eight-vertex model in the anti-ferroelectric 
regime. 

Our method is based simply on the Yang-Baxter equation and the crossing symmetry 
and, as such, is applicable to more general models. This construction also allows one to 
interpret the q-vertex operator employed in [1,2] as an operator that inserts a dislocation 
(an extra half-infinite line) on the lattice. In this formulation the vertex operators generalize 
straightforwardly to the elliptic case. It remains an interesting open problem to give a 
mathematical construction of such operators, along with the relevant elliptic deformation of 
Lie algebras. 

The text’is organized as follows. In section 1, we introduce our notation, and formulate 
the properties of the general correlators including Smimov’s difference equations. We 
give a heuristic argument for derivation of the main statements. In section 2 we solve 
the simplest difference equation and derive the spontaneous staggered polhzation. We 
obtain the expression conjectured by Baxter and Kelland [6 ] .  Section 3 is devoted to the 
construction of vertex operators on the lattice. 
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2. Correlators and Smirnov’s equations 

2.1. The eight-vertex model 

Consider an infinite square lattice consisting of oriented lines, each carrying a specual 
parameter varying from line to line. The orientation of each l i e  will be shown by an mow 
on it. A vertex is a crossing of two lines with spectral parameters, say < I  and (2, together 
with the adjacent four edges belonging to the crossing lines, as shown in (1). The edges are 
assigned state variables (which we call ‘spins’) : E,. EZ. E ; ,  E;. In the eight-vertex model, 
each spin can take one of the two different values +. A spin configuration around the vertex 
is an assignment of f on the four edges. Notice that ow notation is somewhat different 
from the standard. In particular, mows on the lines denote the orientations that we assign 
to them, rather than the spins. There are 16 possible vertex configurations. We assign each 
configuration a Boltzmann weight. The set of all Boltzmann weights form the elements of 
the R-matrix: 

The matrix R(<) acts on C2 @ C2 via the natural basis (U+, U-) of C2 as R({)U,; @ Us; = 
E; s;. Normalized by the partition function per site K ,  it is given explicitly U,, @v,R(<),, 

by 

ff +- -+ -- 
++ a(<) 0 .O d(<) 

1 +- 0 b(5) 43 
R(O = - K(<)-+ [ 0) c y  b$ :<)) -- 

where the unnormalized Boltzmann weights a, b, c, d (see (10.4.23-24) and (10.7.9) in [71) 
are given by 

a(<) = -ip@(iA)H(iA - iu)@(iu) 

c(<) = -ipH(ik)@(iA - iu)@(iu) 

where we set q = exp(-zl‘/l), x = exp(-zh/ZI), < = exp(nuJ21). We shall restrict 
OUI discussion to the phcipal regime 

b(( )  = -ip@(iA)@(iA - iu)H(iu) 

d ( ( )  = ipH(ih)H(iA - iu)H(iu) 

0 < & < x < 5-1 < 1 

in which K(<) is given by (see (10.8.44) in [7]) 

K ( < )  = PYx-1i . (<2)(x2<2;  q)m(qX < , 4 ) m  Y = 4 (4s 4)$(q2; 4% -2 -2. 114 . 

(x42; 4. x4),(xzz-l;  q,  x4),(qz; 4. x ~ ) , ( ~ x ~ z - ~ ;  4. x4), 
( ~ ~ 2 - l ;  q,  x4),(xZz; q. x ~ ) , ( ~ z - ~ ;  q, x4),(qx2z; q.x4),  . i ( z )  = 
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The symbol (2; q l ,  . . . , q.& means nz,: ,,," r=O(l -zq;' . . .q:). Notice that in the definition 
of the R-matrix, K was used to normalize the Boltzmann weights. 

The R-matrix satisfies 

Here Pu 8 U' = U' 8 v ,  (.)'I means the transpose with respect to the first component, and 

u x  = (; A). we note that 

and that (2) is equivalent to 

Namely, reversing the orientation of a vertical line in (1) gives rise to reversing the spins 
on that line and shifting the spec& parameter 51 4 5; = 51/x.  

2.2. Correlators and dislocations on the lattice 

Let us consider an infinite square lattice IS] with all the vertical l i e s  oriented downward, all 
the horizontal lines to the left. We associate the spectral parameters { j  to the vertical lines, 
and & to the horizontal lines. As argued in [SI,' the calculation of correlators of arbitrary 
spins reduces to calculating correlators of the vertical-edge spins located on the same row, 
where by 'row' we mean the set of all vertical edges between two neighbouring horizontal 
lines. We shall restrict our attention to this case. 

In the principal regime we are considering, the Boltzmann weight c dominates the 
others. In the low-temperature limit: q, x ,  & / f j  + 0, only type-c vertex-configurations are 
non-vanishing. Therefore, the spin variables take the same value in the NE-sw direction, 
and altemate in the NW-SE direction. In this limit, two spin configurations are possible: 
the ground-state Configurations (GsCs). At finite but low temperatures, we choose and fix a 

GSC, and consider the statistical sum over all configurations which differ by a finite number 
of spins from that GSC. We let i E ZZ label the choice of GSC by the,fact that in the 
low-temperature limit the spin on some reference edge is frozen to the value (-lY+'. The 
choice of the reference edge will be givw later. Now choose a particular row, and consider 
n successive vertical edges on it. Let 51, . . . , 5" be the spectral parameters attached to the 
corresponding lines, numbered from left to right. As the reference edge we take the next 
left to the one with the spectral parameter (1. Consider the probability of the spins taking 
the values E ' ,  . . . , &n E (&I. Baxter's conclusion [SI was that this correlator is independent 
of all other spectral parameters. 

In this work, we consider sums over all spin configurations on various lattices, with 
certain spins kept fixed. On infinite lattices, such configuration sums are not well defined. 
Only the ratios of such sums. on the same lattice but with the different choices of fixed spins, 
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are well defined in low-temperature series expansions. when considering probabilities, the 
normalization is chosen so that the sum of all correlators is equal to 1. However, except 
for the simplest situation such as (4). such a choice does not give solutions to our system 
of equations. In fact, we do not know how to normalize OUT correlators. We postulate that 
there exists a proper normalization such that they satisfy all the required propelties given 
below. 

In order to obtain expressions that satisfy our difference equations we consider more 
general correlators than the probabilities of spins. We recover the original spin correlatom 
by specializations (see (4)). We proceed as follows: we break then lines at the chosen row, 
and change the spectral parameters of the lower halves to <;, . . . , <A. Then we consider the 
configuration sum with the 2n spins fixed to the values E,,  . . . , cn from left to right on the 
upper row. and E; ,  . . . ,E: on the lower (see figure 1). We also consider a 'dislocated' lattice 
obtained as follows. Delete the n lower half-lines with the spectral parameters <{, . . . , <;. 
Therefore, we am left with the n upper half-lines whose spectral parameters are 5, .  . . . , <". 
Rename them to tn+l,. . . , ch. Now insert another set of n upper half-lines with spectral 
parameters $1, . . . , en to the left of those which already exist. The orientation of the inserted 
lines is downward. Thus we obtain 2n half-lines with the spectml parametem 61, . . . , 
from left to right (see figure 2). We consider the correlator of the 2n spins ZI, . . . , ta on 
the bottom edges of these half-lies, and denote it by FZ'(C1, . . . , $&,...,h.. 

FP'(<Llx .  . . . , <;I.. < I ,  . . . , L - s ;  .__., -4.8 ,...., s. . 
One of our postulates is that the correlator of figure 1 is given by 

In section 1.3 we will give more general stakmmts than thi- (11) and (12). If we 
restrict the variables in the above expression as follows: 

(4) 

we obtain the probability of the original n spins taking the values E , ,  . . . , E, on the regular 
infinite lattice (see (9)). 

F~in'(<nlx.. . ..<ilx.<i. .. . . t n ) - s  ",..., --8,.s ,.._., E. 

c 

c 

<I c 

G G 

$-t 
+---I- 

- 

- 

Figure 1. Breaking the successive n vertical lines. 

Hereafter we will write n,< j ,  &j for Z n , e j , t j  in F('), with the understanding that if n 
is odd, the correlator is zero. Set 
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Figure 2 The dislocated latlice with 2n 
upper half-lines. 

We will denote by Rja(<) ( j  < k )  the matrix R(<)  acting on the jth and the kth tensor 
components. We also use the transposition Pjt = Rjt(1). 

The following are the main results of this paper. In section 1.3 we will give a heuristic 
proof by considering F,?(<l,. . . , <,J. ,,..., as a sum over all configurations with the spins 
e l ,  . . . , E, kept fixed. 

Difference equation: 

R-matrix symmetry: 

2.3. Rotating a half-line 

Let us consider the following more general correlators: choose a face of the lattice. Let 
n1 + n2 = n (even). Insert nl upper half-lines and n2 lower half-lines into the face, 
all of which are oriented downward. Note that in section 1.2 we considered the cases 
where nl = n2 or n2 = 0. We let the edge on the west side of the said face to be 
the reference edge used to label the sectors, i.e. in the low-temperature limit the spin on 
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that edges is (-lY*l (see figure 6). Denote the correlator of this dislocated lattice by 
FIi)(<l ,  . . . , <",; 51, . . . , 5LJs ,,_._. en,;a; ..._. L;z. Here we place the spectral parameters and the 
spins of the upper lines first, from left to right, and then the lower, also from left to right. 
A clue to the difference equations is the following. 

Rotation: 

F " ' ( h ,  . . . , L,; C;, . . . . <& ,..., snl;s; .__. . 8' "1 

(11) 

(12) 

- F"+" - (W. 51- . . .. <m; <;, . . . 9 r;&;,Z I...., soa;e; ,..., E;* 

F"'(Z-i,. .. I L,-L; 5;. . . .. <;z~<a, lx )e  ,,.._, sn,-,;E; ,.._, ek2,-sn, . 

Let us give heuristic arguments to derive (5H12). We suppose that the correlators are 
given as configuration sums on the infinite lattice. It makes sense to do that because of 
the normalization of the Boltzmann weights by K .  We further assume that the vertices on 
the lattice that are pushed away to infinity by a Z-invariant deformation of the lattice can 
be neglected. Let us use this assumption in a concrete situation. Consider a part of the 
lattice as given in figure 3, on the left. The rest of the lattice, not shown in this figure, is 
irrelevant in the following argument. Denote the configuration sum with the spins €1 and 
EZ by F ( E I ,  E Z ;  A). The configuration sum for the lattice on the right, is given by 

G <> 

E l  62 I I e' 

h h' 
Figure 3. misting two vertical lines. The exm 
vMex in A' can te pushed up to infinily. 

We can push out the extra vertex in A' to the north as far as we wish by using the Yang- 
Baxter equation, without changing the statistical sum F ( ; ) ( E ~ .  E Z ;  A'). Therefore by the 
above assumption, we have F( ' ) (EI .  EZ; A') = F")(E, ,  EZ; A), showing (6). 

Next, see figure 4. The right-hand side of the figure represents the left-hand side of 
(9). the bullet showing the summation xed. Using unitarity, as shown on the left-hand 
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e id = 

= m  c L.< 

Figure 4. 'Re unitarily with the 
WO horizontal lines oriented left, 
and the case where the orientation 

side of the figure, we can push away the two vertical lines with the specwal parameters f 
and xf. Therefore, we have (9). 

Equation (10) follows from (6) and (3); (7) is obvious; (8) follows from the parity of 
the Bolmann weights. 

Finally, we will show (llK12). Since the arguments are the same, we will consider 
only (11). See figure 4, where <i in (11) is shown as 5. We can push away the semi-circle 
with the spectral parameter f. In the limit, we have (1 1). 

3. Spontaneous staggered polarization 

Let us work out the case n = 2 in detail. Since F$)(ft.f2) depends only on the ratio 
f = f,/c2, we shall denote F$'(f1,f2) by F$'(<), Set G*(f) = FF'(f) f F:"(f). 
Equation (5) for Ft'(f) reads G * ( X - ~ ~ )  = =!=R(f)G*(f). Using (7), (8) we have 
G$-(f) = fG?+(f) ,  Gt-(-f) = GZ-(f). Thus the equations reduce to 

Set 

which solves the equation ~ ( x - ~ z )  = E ( z ) - l ~ ( z ) .  It is easy to seethat the following is a 
solution of (14) satisfying the normalization (9). i.e. G$-(x-') =.I: 

Moreover the solution is unique if we impose further the condition that G:;(f) is 
holomorphic in the neighbourhood of x 6 151 < x- ' .  In view of (4) and following 
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Figure 5. The use of fhe Ymg-Baxter 
equation U) rotale a Mf-line. A choice 
of osc is written explicitly. Notice that 
after rota!ing the asc changes. 

the definition given in [9], the staggered polarization PO is 

Figure 6. WO types of disloca- 
tion The minus sign shows the 
i = 0 osc. 

This formula was conjectured by Baxter and Kelland [6]. It was proved in the trigonometric 
case q = 0 by Baxter [9]. Our result is stronger than this: in the context of this section, 
it says that the ratio of the configuration sums for the lattice A, in figure 6, in the i = 0 
sector, with the two different choices of the spins at the end edges, i.e. (&I, E*) = (.t, i). 
is given by 



and that of the lattice Ab is given by 

- 1 GS-(</x) + G;-(C/x) 
2 G+,(</X) - GI+(</x). 

We have checked these statements to a first few orders in the low-tempmture expansions. 

4. Vertex operators 

In this section we shall reformulate the construction of section 1 as an operator theory. To 
this end let us first recall the comer transfer matrices ( m s )  following [7]. Consider the 
lattice drawn in figure 7. Number the rows (resp. columns) from bottom to top (resp. from 
right to left) as - N  + 1,. .. ,O, 1,. . . , N .  Fixing the boundary spins to the ith GSC, we 
denote by A&), A1 (<), A*(<). A3(<) the CTM corresponding to the NE, SE, SW, Nw quadrant 
respectively. When formulated in the IRF language they are the transpose of B, A, D, C 
in [7, p 3661. For instance the (U, U') element of A&) is the partition function of the NW 
quadrant where the horizontal (resp. vertical) boundary spins are fixed to U = (€1, . . . , EN) 

(resp. U' = ( E ; ,  . . . , E")). From the relations (2) it follows that A&) = R A ~ ( x - ~ < - ~ ) ,  
AI(() = RA3(<)R A&) = A3(x-'<-')R, where 77, = ux 8 . .  . 8 ux denotes the spin 
reversal operator. Normalize the CTMs so that the largest eigenvalue of A&) is 1. Baxter's 
argument shows that in the principal regime we have IimN,, A3(<) = < - D .  where the 
operator D is independent of C and has discrete eigenvalues 0.1.2, . . . . Consequently 

lim Ao(C)AI(C)AZ(C)A~C) = xZD. (16) 
N-rW 

+ -  

A* 

- 1  I -  
+ -  A,  Figure 7. The m s  A0 ,..., As. The 

0th GSC is depicted. 
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1 
F i p  8. Manix element where U = ( E l .  . .. . 8 n h  

U'=(&; ..... E;). 

Denote by X i  the space of eigenvectors of A&) in the limit. In the trigonometric case 
q = 0, as was shown in [lo, 11, 'Hi can be identified with the level-I highest-weight module 
V ( & )  of the quantized affine algebra U-,(&) (with -x playing the role of the deformation 
parameter), and D acts as the grading operator in the prinicipal gradation. In the elliptic 
case, we have no such representation theoretical picture. However if 'Hi = $&%i,d is 
the eigenspace decomposition for D ,  then dim7.li.d cannot change continuously. Hence it 
should be the same as the q = 0 case, giving 

Consider now the operator whose (o.03 matrix element is given by figure 8. We expect 
that in the large-lattice limit N + 00 it will give rise to a well defined operator 

@j:'(<) : Xi-PXi+I. (18) 

The effect of operating with @!:'(<) amounts to inserting a vertical dislocation in the lattice. 
In view of the expression (16) of the CrMs the function F,? of section 1 is expressed as 

The arguments in section 1 can be translated to the properties of 0;;' (5).  We summarize 

(20) 

them below: 

X2D 0 cl;;'(<) ox-20  = @!+'(x2<) I F  
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There exists a linear isomorphism U : 'Ho -+ 'HI such that 

v o D = D o w  @ ; E ( < )  = IJ 0 @-do 0 (22) - 
@;;l(-c) = (-l)i+160jy(<) (23) x@$,z(()~t;l(<) =id = 6,,, x id. (24) 

In (24) we have set @pi+'(<) = @i?:(x-'<). The difference equations (5) for (19) are an 
immediate consequence of (ZO), (21). In the trigonometric case (18) is related to the vertex 

of (. 

s=* 

operators in [1,2] via @j;'(<) = g-L/z<r'+E)/z-i@A:: - A  I (< 2 ) where g is a scalar independent 
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